🤖
Data Structures and Algorithms
  • CS Theory And Problems
  • Big O
    • Big O Notation
  • Algorithms
    • Binary Search
    • Breadth First Search (BFS)
    • Depth First Search (DFS)
    • Dynamic Programming
    • Kadane's Algorithm
    • Kahn's Algorithm
    • Quickselect
    • Recursion
    • Sorting Algorithms
    • Sliding Window
  • Data Structures
    • Binary Heap
    • Graph
    • Linked List
    • Trees
  • Problems
    • LeetCode
      • 1. Two Sum
      • 3. Longest Substring Without Repeating Characters
      • 5. Longest Palindromic Substring
      • 11. Container With Most Water
      • 15. 3 Sum
      • 19. Remove Nth Node From End of List
      • 20. Valid Parentheses
      • 33. Search in Rotated Sorted Array
      • 49. Group Anagrams
      • 53. Maximum Subarray
      • 55. Jump Game
      • 56. Merge Intervals
      • 76. Minimum Window Substring
      • 98. Validate Binary Search Tree
      • 105. Construct Binary Tree from Preorder and Inorder Traversal
      • 121. Best Time to Buy and Sell Stock
      • 133. Clone Graph
      • 141. Linked List Cycle
      • 152. Maximum Product Subarray
      • 153. Find Minimum in Rotated Sorted Array
      • 200. Number of Islands
      • 206. Reverse Linked List
      • 207. Course Schedule
      • 217. Contains Duplicate
      • 226. Invert Binary Tree
      • 238. Product of Array Except Self
      • 242. Valid Anagram
      • 297. Serialize and Deserialize Binary Tree
      • 347. Top K Frequent Elements
      • 417. Pacific Atlantic Water Flow
      • 424. Longest Repeating Character Replacement
      • 435. Non-overlapping Intervals
      • 647. Palindromic Substrings
Powered by GitBook
On this page
  • Description
  • Solution
  1. Problems
  2. LeetCode

141. Linked List Cycle

Description

See: https://leetcode.com/problems/linked-list-cycle/

Solution

The strategy is to use two pointers, a walker and a runner (slow and fast). The walker (slow) moves forward one node at a time. The runner (fast) moves ahead 2 nodes at a time. So if there is a cycle, the runner will eventually lap the walker and the walker and runner will be at the same node. Otherwise the runner will reach the end of the linked list first.

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def hasCycle(self, head: Optional[ListNode]) -> bool:
        if not head or not head.next:
            return False
        walker = head
        runner = head
        while runner and runner.next:
            walker = walker.next
            runner = runner.next.next
            if walker == runner:
                return True
        return False
    

Time Complexity: O(N).

Space complexity O(1)

Previous133. Clone GraphNext152. Maximum Product Subarray

Last updated 3 years ago